Stem Cell-Derived Human Intestinal Organoids as an Infection Model for Rotaviruses
نویسندگان
چکیده
UNLABELLED Directed differentiation of stem cell lines into intestine-like tissue called induced human intestinal organoids (iHIOs) is now possible (J. R. Spence, C. N. Mayhew, S. A. Rankin, M. F. Kuhar, J. E. Vallance, K. Tolle, E. E. Hoskins, V. V. Kalinichenko, S. I. Wells, A. M. Zorn, N. F. Shroyer, and J. M. Wells, Nature 470:105-109, 2011). We tested iHIOs as a new model to cultivate and study fecal viruses. Protocols for infection of iHIOs with a laboratory strain of rotavirus, simian SA11, were developed. Proof-of-principle analyses showed that iHIOs support replication of a gastrointestinal virus, rotavirus, on the basis of detection of nonstructural viral proteins (nonstructural protein 4 [NSP4] and NSP2) by immunofluorescence, increased levels of viral RNA by quantitative reverse transcription-PCR (qRT-PCR), and production of infectious progeny virus. iHIOs were also shown to support replication of 12/13 clinical rotavirus isolates directly from stool samples. An unexpected finding was the detection of rotavirus infection not only in the epithelial cells but also in the mesenchymal cell population of the iHIOs. This work demonstrates that iHIOs offer a promising new model to study rotaviruses and other gastrointestinal viruses. IMPORTANCE Gastrointestinal viral infections are a major cause of illness and death in children and adults. The ability to fully understand how viruses interact with human intestinal cells in order to cause disease has been hampered by insufficient methods for growing many gastrointestinal viruses in the laboratory. Induced human intestinal organoids (iHIOs) are a promising new model for generating intestine-like tissue. This is the first report of a study using iHIOs to cultivate any microorganism, in this case, an enteric virus. The evidence that both laboratory and clinical rotavirus isolates can replicate in iHIOs suggests that this model would be useful not only for studies of rotaviruses but also potentially of other infectious agents. Furthermore, detection of rotavirus proteins in unexpected cell types highlights the promise of this system to reveal new questions about pathogenesis that have not been previously recognized or investigated in other intestinal cell culture models.
منابع مشابه
I-5: Multicellular Human Testicular Organoid: A Novel 3D In Vitro Germ Cell and Testicular Toxicity Model
Background Background: Mammalian spermatogenesis is regulated through paracrine and endocrine activity, specific cell signaling, and local control mechanisms. These highly specific signaling interactions are effectively absent upon placing testicular cells into two-dimensional primary culture. The specific changes that occur between key cell types and involved spermatogenesis signaling pathways...
متن کاملSalmonella‐infected crypt‐derived intestinal organoid culture system for host–bacterial interactions
The in vitro analysis of bacterial-epithelial interactions in the intestine has been hampered by a lack of suitable intestinal epithelium culture systems. Here, we report a new experimental model using an organoid culture system to study pathophysiology of bacterial-epithelial interactions post Salmonella infection. Using crypt-derived mouse intestinal organoids, we were able to visualize the i...
متن کاملOrganoid and Enteroid Modeling of Salmonella Infection
Salmonella are Gram-negative rod-shaped facultative anaerobic bacteria that are comprised of over 2,000 serovars. They cause gastroenteritis (salmonellosis) with headache, abdominal pain and diarrhea clinical symptoms. Salmonellosis brings a heavy burden for the public health in both developing and developed countries. Antibiotics are usually effective in treating the infected patients with sev...
متن کاملInteraction of Salmonella enterica Serovar Typhimurium with Intestinal Organoids Derived from Human Induced Pluripotent Stem Cells
The intestinal mucosa forms the first line of defense against infections mediated by enteric pathogens such as salmonellae. Here we exploited intestinal "organoids" (iHOs) generated from human induced pluripotent stem cells (hIPSCs) to explore the interaction of Salmonella enterica serovar Typhimurium with iHOs. Imaging and RNA sequencing were used to analyze these interactions, and clear chang...
متن کاملSpecific Labeling of Stem Cell Activity in Human Colorectal Organoids Using an ASCL2-Responsive Minigene
Organoid technology provides the possibility of culturing patient-derived colon tissue and colorectal cancers (CRCs) while maintaining all functional and phenotypic characteristics. Labeling stem cells, especially in normal and benign tumor organoids of human colon, is challenging and therefore limits maximal exploitation of organoid libraries for human stem cell research. Here, we developed ST...
متن کامل